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A rigorous deduction of a one-dimensional (1D) model of turbulent jet diffusion flames developed for
releases of gaseous fuels is presented. This model considers the presence of a non-uniform incident
wind and is derived from a full three-dimensional (3D) formulation of the fluid dynamics equations
complemented with models for chemical reaction, thermal radiation and an adaptation of the k-e-g
closure method. To deduce the one-dimensional model, the 3D problem is considered to be parabolic
along the center line of the flame and self-similar profiles in planes normal to this line are assumed.
New terms, not present in previous works, have been introduced in the 1D conservation equations and
an alternative approach to derive the production terms of the turbulent kinetic energy and of the
mixture fraction variance is proposed. To evaluate the validity and usefulness of the model, its results
have been compared with those of the three-dimensional model, developed by the authors, and with
available wind-tunnel and full-scale experimental results, and a good agreement is found.

Kéywords: Integral model; turbulent jet diffusion flames

1. INTRODUCTION

Turbulent jet fires are involved, either as a hazard or as a result of a controlied
relief of flammable gases, in some operational or emergency situations. There
are different ways to predict the effects of these fires. One is to use mathema-
tical models based on the Navier-Stokes equations, complemented with some
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appropriate models describing combustion and a closure procedure to model
the turbulent transport terms. The numerical resolution of these models is
commonly based on finite-differences approximations of the equations (Fair-
weather et al,, 1992; Hernandez et al., 1995), which may require a relatively
large computational effort.

The flow equations can be simplified if appropriate averages and distribu-
tion profiles can be defined in planes normal to a center line. Then, the partial
differential equations may be converted to ordinary differential equations,
with the distance along the center line as independent variable. The problem is
then simpler and the computer time is substantially reduced, from hours to
fractions of minutes. This type of one-dimensional or integral model has been
used extensively by Escudier (1972), Fay (1973), Tamanini (1981), Peters and
Gottgens (1991), Cook (1991), and Caulfield et al. (1993), among others. In this
work, we present a rigorous way to derive the one-dimensional equations,
that, in our knowledge, has not previously been formulated. A more detailed
description of the derivation of this model can be found in Servert (1993), and
Crespo et al. (1994). Fay (1973) proposed a model somehow similar to ours,
but it has a more complex interpretation and introduces a definition of the
average quantities that depends on the existence of an ambient wind. Ours
applies to situations in which there is both ambient wind with shear and no
wind. Whereas other models (Escudier, 1972; Cook, 1991; Caulfield et al.,
1993; Tamanini, 1981) either assume top-hat profiles or cosine-type profiles
that end at a finite distance from the center line, the model presented here can
also be applied using self-similar profiles that extend to infinity in the
transverse direction.

The three-dimensional equations describing the flow field are formulated
assuming that the flow is parabolic along the center line. The k-¢-g model is
used to close the turbulent equations, and additional equations for the mixture
fraction and its variance are formulated. The combustion model is based on an
infinitely-fast reaction mechanism and a prescribed shape for the probability-
density function of the mixture fraction. Mass fractions of fuel, carbon dioxide
and water vapor are obtained as functions of the mixture fraction and its
variance, and the temperature is determined as a function of these same
variables and of the enthalpy. A separate method, similar to the one proposed
by Caulfield et al. (1993), is used to calculate the soot mass fraction. The
method proposed by Modak (1979) is used to evaluate the emissivity of the
mixture from the mass fractions of CO,, H,O and soot that is needed to
calculate radiation losses.

Integrating the three-dimensional equations in cross sections and applying
aspatial average, the one-dimensional equations are obtained. If the turbulent
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diffusivities of all the variables are equal, a single relationship between the
average and maximum values of the quantities is obtained that simplifies the
numerical calculation, in particular the calculation of the source terms.

Further manipulation of both the one-dimensional and the three-dimen-
sional equations leads to a generalization of Tamanini’s (1981) expression for
the production term of the turbulent kinetic energy and of the variance of the
mixture fraction, that takes into account the cross-wind effect, and extends its
validity to arbitrary spatial distributions.

A code, termed UPMFIRE, has been developed to implement the one-
dimensional model proposed here. The results of the code are compared with
wind-tunnel experimental results (Duijm, 1993; Verheij and Duijm, 1991;
Bakkum, 1994) and with full-scale measurements (Ott, 1993; Bennett et al.,
1991). The model has also been compared with a three-dimensional model
(Hernandez et al., 1995). In general, a good agreement has been found from
these comparisons, and this code can be considered as a useful tool in risk
assessment.

To design and operate some industrial facilities where jet fires can occur,
information about the heat transferred to surroundings objects or engulfed
obstaclesis also needed. A method to include the effect of an engulfed obstacle,
small in comparison with the characteristic length of the flame, by means of a
finite jump in the flow conditions, is described by Crespo et al. (1994), Crespo
et al. (1995) and Servert et al. (1995), and will not be considered here. Other
effects included in this 1D code (Crespo et al., 1994), not presented here, are the
estimation of lift-off distance and of the equivalent exit conditions for under-
expanded jets.

2. FLOW EQUATIONS

The one-dimensional conservation equations of mass, momentum, energy,
mixture fraction, £, turbulent kinetic energy, k, dissipation rate of the turbulent
kinetic energy, ¢, and variance of the mixture fraction, g, are obtained from the
classical three-dimensional equations described for example in Fairweather
et al. (1992) and Hernandez et al. (1995). The magnitudes k and ¢ are needed to
close the turbulent transport terms, and ¢ and g to model combustion. The
equations may be written in the general form

pd 0~
aL;ﬁ+G—Xi(pv,-d)—F¢i)=S¢, (1)
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where [ﬁ can be equal to: 1, any component of the velocity, 7, total enthalpy,
h, mixture fraction, ¢, turbulent kinetic energy, k, dissipation rate of the
turbulent kinetic energy, ¢, or variance of the mixture fraction, g. In this
equation, p is the density and S, is the source term. The Favre average is
denoted by a tilde and the temporal average by a dash. The averaged
magnitudes will be assumed to be steady, so that the first term in the
left-hand side of equation (1) will be zero. The diffusion vector is expressed in
the following way for the scalar variables:

w0
_ 0P 2
F¢.~ 0.¢ axi’ ( )

and for the turbulent Reynolds stresses:

o5, o5\ 2 o, |
- _t —2 | ——0.. — 3
TU lut(axj—'_axi) 3511<lutaxk+pk>7 ( )

where », is the turbulent dynamic viscosity, and o is the turbulent Prandt}
number for the variable ¢. The turbulent viscosity is obtained from

_k?
t=Cup— 4

where C,, is the classical coefficient of the k-¢ model, that usually takes the
value 0.09.

The source terms include buoyancy effects in the vertical momentum
equation, and production and dissipation terms in the equations for k, ¢ and g.
In the energy equation, the work of gravity force has been neglected and the
Mach number has been assumed to be low enough so that the kinetic energy is
negligible compared to the thermal energy; then, the only source term that is
left is the one corresponding to thermal radiation.

The model is completed with a perfect gas law,

~R,T, )

g

R=Th R~ 1]

where the pressure is assumed to be constant, equal to the ambient pressure.
Pressure variations are neglected compared with the value of the absolute
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pressure. A state equation for enthalpy such as
dh=c,dT+QdY;, (6)

where ¢, can be a function of temperature and composition, is used.

3. COMBUSTION MODEL

To define the combustion model, the classical hypothesis of one-step, irrever-
sible reaction (represented by Fuel + r, Oxidizer — (1 + r,) Products, where r,,
is the stoichiometric ratio), fast chemistry, and equal diffusivities for all the
species are made. This leads to the classical conserved-scalar approach and to
the well-known relation

W= ¢,
BO=0  E<d o)

where Y is the instantaneous value of the fuel mass fraction and £, is the
stoichiometric mixture fraction. From the instantaneous value, the Favre
average is obtained through

Ty

e és(é —&JP(Q)dS, ®

where P(¢) is the Favre-averaged probability density function of ¢ of a
predefined shape, whose parameters are expressed in terms of the average
values of the mixture fraction and its variance, g. For the predefined shape of
P(&)a two-delta function has been used; also an alternative approach based on
a correlation for the unmixedness integral (Mudford and Bilger, 1984) can be
employed. A detailed explanation may be found in Hernandez et al. (1995).

To calculate the temperature, equation (6) is used, where ¥, is obtained from
equation (8) and f is calculated using the energy equation.

The instantaneous mass fractions of oxidizer and products are

Yo=0,Yr+ Y5,)—E(r. + Y5,), 9

=0+ D — 1) (10)
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If the composition of the hydrocarbon is given by C,H,, and ¢ < ¢, the
products are mainly CO, and H,O, whose mass fractions are obtained from
stoichiometry:

m

—_— 11
12n+m’ (1

YHZO =9(&—Yp)

n

S — 12
12n+m (12)

Yoo, = 44(¢ — Y)

Equations(9)to(12) are linear in both £ and Y, and consequently also hold for
the Favre averaged values.

Other products are assumed to have small mass fractions, and are not
usually relevant except for soot, which is considered because it plays an
important role in radiative processes, and for others, such as CO, because of its
contaminant effects. Servert (1993) proposes a method to calculate CO mass
fraction, based on a compilation of experimental results by Sivathanu and
Faeth (1990), that will not be presented here.

A procedure for the calculation of soot mass fraction similar to the one
proposed by Fairweather et al. (1991) and latter applied to 1D models by
Caulfield et al. (1993) is used in this work. Fairweather et al. (1991) solve two
conservation equations, similar to equation (1), one for the soot mass fraction
and another for the particle number density. In the equation for soot mass
fraction, source terms associated to nucleation, surface growth, and oxidation
are included. The equation for particle number density includes source terms
due to nucleation and coagulation. Soot formation proceeds from a pyrolysis
intermediate, acetylene, that is considered to form solid carbon through
nucleation and surface growth. Acetylene is obtained as a function of &, which
has been evaluated by Fairweather et al. (1991) for laminar combustion using
a 60 s~ * strain rate for CH,.

4. AMBIENT FLOW

The ambient flow where the jet diffuses corresponds to the surface layer of the
atmospheric boundary layer in uniform, flat terrain. In this model, the ambient
magnitudes satisfy equation (1) and are considered to change only with height
(Crespo et al., 1991). It is assumed that they vary in a characteristic length
which is much larger than that corresponding' to the variation of flame
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properties in transverse direction. They are expressed in terms of the surface
roughness of the ground, the Monin-Obukhov length (related to atmospheric
stability), the turbulent friction velocity, and the flow properties at the ground.
For the case of a neutral atmosphere, the Monin-Obukhov length is equal to
infinity, and the corresponding expressions are: for the velocity,

v, = :2.5u*log<zi), 0,,=0, v,=0; (13)

2 *3

6, =255, (14)
zZ

and, for the mixture fraction and its variance, since there is no fuel in the
ambient,

¢=0, ¢,=0. (15)

The detailed expressions for non-neutral atmospheres can be found in Crespo
et al. (1991).

5. DEDUCTION OF THE ONE-DIMENSIONAL MODEL

For the flame described in the introduction and shown schematically in
Figure 1, if a jet center line and self-similar profiles in planes normal to it can be
defined, the partial differential equations presented in section 2 may be
converted to ordinary differential equations, with the distance along the center
line as the independent variable. The center line is assumed to be contained in a
plane normal to the ground. It is also assumed that, in planes normal to the
center line, the perturbations of all dependent variables, | — ¢, |, are largest at
the center line itself, and that they decay and tend to zero for large enough
values of the radial distance r to the center line. For all the dependent variables
of equation (1), it is assumed that there are self-similar profiles of the form

$— o= — ¢,,)w¢(Ri¢, <p), (16)
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Incident air stream

V.

Fuel jet

FIGURE 1 Schematic showing the model.

where ¢ is the azimuthal angle, and ¢, and R, satisfy the normalization
conditions

2n *oo
j f Yyrdedr=nR}, ¥,0, 0)=1 (17
0Jo

R, and ¢, are functions of the coordinate along the center line, s, to be calculated
from the 1D model. This assumption may look inconsistent because, due to the
curvature of the center-line, the planes normal to it would intersect and ¢ could
be multiple-valued. However, because of the parabolic approximation, the
radius of curvature of the center line, that is expected to be at least of the order of
magnitude of its length, s, should be much larger than the characteristic length,
Ry, of decay of ¥, so that ¥, ~ 0 in the region where & could be multivalued.

So far, all the selected profiles have axial symmetry. Buoyancy and lateral
wind could make this assumption questionable, and this is a limitation to be
relaxed in future works. The Gaussian distribution,

—r\2
¢

is the one used to obtain the results presented in this work. For the exact
solution of the laminar jet, that also holds for the turbulent jet, the distribution
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is (Schlichting, 1968)
1
ﬁi'
14+ ( —
(%))

Caulfield et al. (1993) use the cosine profile, that extends to a finite distance,
R

¥, = (19)

14°

1
‘I’¢=§(1+cos(nr/R1¢)), r<R,; ¥,=0, r>Ry

where
272 \1/2
R1¢=<m> Ry; (20)

the normalization condition of equation (17) has been used to calculate the
relationship between R, and R, .

5.1. Definition of the Spatial Averages

The following spatial-averages, denoted by (), are defined:

Mm@y — ¢,) = lim f pi(¢ — ¢,)dA, (21)

A— 0

where A is contained in a plane normal to the center line and dA = rd pdr. It is
assumed that the average of the velocity component contained in that plane,
(W, is equal to zero, and that i is the velocity component normal to it. For
large A, the value of ¢ is assumed to tend to ¢, rapidly enough, so that the
integral is finite.

The mass flow rate, m, across A is defined by

m—m, = lim f (pfi — p,v,c080)d A, (22)
A

A— o
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where 6 is the angle that the center line forms with the horizontal plane, and m,

-is an equivalent mass flux of air through the cross section, that can not be
defined as the integral {p,v,cos8dA because it will diverge as A tends to
infinity. The following expression is proposed for r,:

" =mp,,u,,cost9 (23)

“ Py

The equivalent average density is defined using the equation of state

D
=R 24)

where p, is the ambient pressure, and equation (21) is used to evaluate (T,
even though the temperature is not a dependent variable of equation (1), and
has not a distribution of the form given by equation (16) except downstream of
the flame tip (&, = £,), where the temperature is proportional to the enthalpy.
Upstream of the flame tip the temperature has the maximum value at r > 0 (at
the position where &= ¢, if radiation were neglected), even though the
maximum of ¥ is for r =0. :
An equivalent flame radius is defined by

m
b= 29

that coincides with R for a top-hat profile.

5.2. One-Dimensional CO«LLservation Equations

To obtain the one-dimensional conservation equations, the following pro-
cedure is used. First, the g‘ene&-al conservation equations (1) for the perturbed,
55, and unperturbed, ¢,, flows are subtracted. The result is integrated over a
control volume enclosed by tJNO cross-sections of area A, separated by a very
small distance ds, and a Iaterzh surface where r » R, and therefore dr¢, As
indicated when discussing the validity of equation (16), the two cross-sections
do not intersect. Using again the parabolic hypothesis, the sum of the
turbulent diffusion fluxes over the two cross-sections can be neglected. On the
other hand, if the difference between the perturbed and unperturbed turbulent
diffusion fluxes decreases with radial distance faster than 1/r, the integral of the
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flux of the turbulent diffusion vector also vanishes over the lateral surface.
Consequently, the turbulent diffusive flux will vanish over all the surfaces
enclosing the control volume, and the following integral equation is obtained:

EU pil(d —d,)dA + J balpii — PavaCOSG)dA} =

ﬁ; ((;ﬁﬁi — Gapavy) mdl + J (S — S4a)dA, (26)

A

where the quantity pii¢, has been added and subtracted in the first two
integrals of the left-hand side. In the first integral of the right-hand side, L, is
the perimeter of 4, and n, is a unit vector normal to the center lineand to L . As
discussed in section 4, the ambient magnitudes vary in a characteristic length
‘which is much larger than R, so that ¢, will be approximately constant over 4
and can be taken out of the second integral on the left hand side. The first
integral in the right hand side represents the entrainment of ambient flow. For
this integral to be finite, the radial velocity perturbation, (5; — v,;) n, must
decay as 1/r. If it is assumed that ¥, decays faster than 1/r (otherwise the first
integral of equation (26) would not converge), then all the variables can be
considered as constant (¢ & ¢,) over the perimeter L »» and can be taken out of
the integral. Using equations (21) and (22), equation (26) can be written as

d . = ., . do,
d_s(m<¢>)'"¢am0+AZ¢+maa_’ (27)
where
.7 d'ha : - —
M= — lim ff; (p¥ —p,U)7dl (28)
dS A- o L,

is the entrained mass per unit length and time, and

AT, = lim f (Sy—S,)dA (9)
A

A—- 0

is the source term. Equation (27) applies to the same variables appearing in
equation (1); in particular, taking ¢ =1, we get dm/ds = r. It should be
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noticed that in the integrands of equations (21), (22), (28) and (29) the
corresponding ambient values are subtracted, so that the integrals converge as
A tends to infinity. In the limiting situation where the effect of the plume is
null, all the integrals are zero, and equations (21),(22),(27) and (28) are satisfied
identically. The last term of equation (27) is like an additional source represen-
ting the effect of the variation of ambient flow properties as we move along the
center line. Its effect is very small, and it can be neglected except for large values
of 5, when (@) becomes very similar to O, ‘

5.3. Mass Entrainment Assumptions

To estimate the mass entrainment, two classical models are used. In the first one,

b
d—': = 1)y = 2bp, /% (@@ — v, cos] + Blo,sind]), (30)

where the factor (p,, /p,)*/? is due to Ricou and Spalding (1961), and o and 8 are
given the values of 0.057 and 0.5, respectively, in the present work. In the
second model, due to Tamanini (1981), the following relation is proposed:

o= Cp iy (31)

where the average turbulent viscosity is evaluated using the classical k-e
method directly applied to the average values:

<ky?

oL (32)

lu'tm:Cupm

Equation (31) is based on the analytical solution for a jet (Schlichting, 1968),
that for both laminar and turbulent jets gives the value C,, = 8n, whereas for
turbulent jets Ricou and Spalding (1961) give the value C,, = 5.5, that is also
the value used by Caulfield et al. (1993). For laminar plumes Yih (1951) gives
the value C,, =127 and Tamanini (1981) takes the value C, = 7n. In the
present model, C,, = 6n ~ 19, that, as we will show, is consistent with the
Gaussian distribution. Caulfield et al. (1993) include an additional term in
equation (31) to take into account the transverse component of the wind.
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5.4. Relationship between Average Values
and Distribution Parameters

If all the turbulent Prandtl numbers for the different variables ¢ are equal, it
may be justified that the function ¥, and the radius R, are the same for all the
magnitudes, and will be termed ¥ and R, respectively. Then the following
relation, obtained from equations (16) and (21) to (25), holds for all ¢'s:

=<$_>_ﬁ=R_2 33
Ay .

where y can be obtained from

j (pti—p,v,cos)¥YdA
3]

y = . (34)
j (pii — p,v,cos)dA

0

To calculate the density in a cross-section, equations (5), (6) and (8) should be
used. However, if radiation and unmixedness were neglected and ¢, were
constant, the temperature could be obtained directly as a function of the
mixture fraction and the following parameters: £, T,, Ty, and the adiabatic
flame temperature, T;. It has been found that usingan appropriate lower value
of the adiabatic flame temperature, T 7, the temperature profiles are almost
equal to those obtained when radiation and unmixedness are retained. In
Figure 2, the parameter y for a Gaussian profile and natural gas, obtained
using this approximate method, is presented as a function of the mixture
fraction at the center line, £, and for two different values of TF. It can be
observed that yis not very sensitive to the variations of T%. The value of y tends
to 0.5 far downstream, and has a minimum around the tip of the flame, where
£e=¢

When the turbulent Prandtl numbers for the variables ¢ are different, there
is no reason for the different y,’s to be the same for all ¢’s, and equations (33)
and (34) will only be valid when ¢ is any of the velocity components.

5.5. General Formulation of the Source Term

If the distribution profile y, were a top-hat, the source term defined in
equation (29) would be
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FIGURE 2 Shape parameter y and coefficient o, in the source term in momentum equation_ as
functions of £, for two different values of the apparent adiabatic flame temperature. Gaussian
profiles. Natural gas. Continuous line: TF/T, = 1; dashed line: T#/T, =0.7.

A):¢=(S¢—S¢a)7zb2. (35)
For other distributions, it is convenient to write this term in the form
AZ¢ =0y (§¢—S¢u)nb2; §¢:S¢(<¢i>): (36)

where §¢ is defined by substituting the local values of the variables by their
averaged values. For a top-hat, «, would be equal to one. Servert (1993) has
shown that these coefficients mainly depend on the value of the mixture
fraction at the center of the jet, £, and has evaluated them for a Gaussian
profile and natural gas flames. Far downstream, ¢ gets close to ¢,, the
dependence of the integrand of the source term (equation (29)) on (¢ — ¢,) can
be linearized, and it can be shown that « » tends to one. The «,, coefficients have
been calculated with the same procedure used to obtain the values of vy
presented in Figure 2; it has also been found that they do not depend very
much on T7.
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5.5.1. Source Term in the Momentum Equation

In the vertical momentum equation, the buoyancy term is

A%, = lim J (pa— P)g,dA=0,,(p,— PG, Tb*, (37
A

Ao x

where ¢, represents the gravity acceleration. The coefficient «,, is larger than
one upstream of the flame tip; its variation as a function of the mixture fraction
in the center line of the jet, for natural gas, is shown in Figure 2.

5.5.2. Source Term in the Energy Equation

If the gas is optically thin and the absorption coefficient is constant in the plane
normal to the center line, equation (36) can be written as follows:

AS, = —a,6,0,({TY* — T2)2nb, (38)

where o, is the Stefan-Boltzmann constant and ¢, = 2ba, with a being the
absorption coefficient. This equation has been generalized to the case of a
non-thin gas, assuming that the flame is locally a cylindrical surface of radius b
and emissivity ¢,. The factor «;, accounts for the temperature variation inside
the flame. The variation of «, with mixture fraction in the center line, for
natural gas, is shown in Figure 3. It is much larger than one in the rich region
upstream of the flame. An alternative approach is used in Hernandez et al.
(1995), where the radiative losses are assumed to be a fixed fraction of the heat
of reaction; the results using this approach and the one proposed here are
compared in Section 6. The method proposed by Modak (1979) is used to
evaluatee, from the mass fractions of CO,, H,O and soot. The emissivity of the
mixture of soot and gas is expressed by: ¢, = ¢, + ¢, — ¢, &,; the soot emissivity,
&, is obtained as a function of soot concentration, temperature and plume
radius, b, combined as an argument of the pentagamma function; the gas
emissivity is obtained from: ¢, = ¢, + ¢,, — Ae,,,, where the emissivities of CO,,
&, and of H,0, ¢,, are obtained from expressions involving the Chebyshev
polynomials, whose arguments depend on the partial pressure of each compo-
nent, temperature, and radius b. The overlap correction Ag,,, is also given as a
function of the previous parameters.
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FIGURE3 Coefficient o, in the source term in the energy equation, and shape parameter for the
velocity modulus, 8, that appears in the equation for the production of &, as functions of £, and for
two different values of the apparent adiabatic flame temperature. 8, corresponds to the case of
large values of the jet velocity compared to the ambient velocity. Gaussian profiles. Natural gas.
Continuous line: T;/Tf = 1; dashed line: T}‘/Tf =0.7.

5.5.3. Source Terms in the Turbulent Kinetic Energy Equation

For the turbulent kinetic energy, there are three source terms. The mechanical
production term, AX, |, could be estimated using a direct calculation (Caul-
field et al., 1993),

or

A—- oo

~ 2
AT, =p,, lim f (M) 2nr dr, (39)
A

where the parabolic approximation is used. However, this method fails for a
top-hat profile, as the integral in equation (39) will diverge. Moreover, it is not
expected that equation (39) would be correct for cases in which the velocity
gradients of the ambient flow are comparable to those of the perturbed flow.
Also, if there is a strong cross wind, when 8 > 0, with vortices shed at the back
of the jet, there will be additional turbulence created that will not be contem-
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plated by equation (39). We have extended an alternative procedure originally
suggested by Tamanini (1981) for no-wind and top-hat profiles, to the case of
having a cross-wind and any distribution profile in the following manner.
From the inner product of the vector momentum conservation equation (1)
and the velocity, the conservation equation of mechanical energy is obtained,

d /. ©2 _ _ -
5o\ Pr — Tl )= =S — (P = p)g, 0 (40)

where the pressure term has been assumed to be only due to ambient pressure,
according to the parabolic approximation, and is included in the buoyancy term.
The term S,,, that in this equation appears as a sink term for the kinetic energy of
the mean turbulent flow, is also the classical source term in the equation for %,

o5,

= Tijg. (41)

Skl

Equation (39) has the same form of equation (1), and taking #%/2 as the
magnitude ¢, equation (27) can be used to obtain a conservation equation for
{#*/2>.1In this equation, there will appear two source terms: one of them will be
—AZ,,, corresponding to —S,, of equation (40), and the other one is due to
buoyancy. An equation for {#)*/2 can be obtained from the inner product
{D;>d<{D;>/ds, applying equation (27) to each velocity component. By subtract-
ing the conservation equation for (#)?/2, multiplied by a factor f8,, from that
for (#*)/2, the following expression can be obtained for AL,

1 d 1
AT,y = s [ 02 Pt 2 (B>,

1 I

+(0a = pm)<B.> 9,(B,2t,, — )b

111
A2 db, L | ldvi o
+[Bv[m ds —mnd—s<v>]+§ ds (maﬂm):ﬂ’ (42)

v
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where o, has been introduced in equation (37) and given in Figure 2, and the
coefficients f5, and a’ are defined by the equations
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Servert (1993) has shown that «' is equal to one for Gaussian profiles and very
approximately equal to one for other profiles. The value of f, has been
calculated similarly to those of y and a,, and assuming that the jet velocity, 7,
is always much larger than the ambient velocity, v, This parameter is
presented in Figure 3; it can be observed that is reaches a maximum around
the position where £ = ¢, and, as £ tends to zero, it tends to 4/3. However, as
stends to infinity f, should tend to one. Then, there should be a downstream
transition region, not represented in Figure 3, where £, is very small, the
velocity {7» changes from a value much larger than v, to v,, and 5, changes
from 4/3 to 1.

In Figure 4 are presented, for a typical case, the values of the contributions
indicated in equation (42); contribution IV is so small that can not almost be
discerned with the scale used. The most important term is II, which is
analogous to the expression proposed by Tamanini (1981), generalized to
profiles different from a top-hat with cross wind; it expresses that the turbulent
kinetic energy is created inside the plume at a rate determined by the kinetic
energy of the relative velocity of the entrained flow. A maximum of term I1 is
reached at around the position of the flame tip, where £, = ¢_. Upstream of this
maximum, term II increases mainly because of the increase in temperature and
decrease of the density that dilates the gas and makes both the jet diameter and
the entrainment rate larger.

Term I (including the minus sign) is associated to the variation of §; this
term is positive downstream of a section near the flame tip, where d /d¢, > 0
(see Fig. 3 and note that d¢ /ds <0), and negative upstream. The absolute
value of term I is everywhere much smaller than term II, except close to the
exit, where ¢, is of order unity, and in a short region downstream from the
flame tip. This behavior can be checked as follows: from equation (27) applied to
p=£, it~ is deduced that d (Z)/ds = — (my/m)X &> , and, consequently, df, /ds = —
(dB,/dLEY) ity )< ED; then, the ratio between terms I and II is (D/(IT) ~ <&>
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85

FIGURE4 Comparison of the different terms that contribute to the mechanical production of
turbulent kinetic energy. Horizontal flame. Fr = 20000, D =10 cm, v,5/u, =0.1.

(d,B,/d(Z)), and, on using the equality (&) = y&,, this ratio becomes (I)/(I)
~ E(dB,JdE ) (v + E.dy/dE ), that is small whenever & is small, except close to
the tip of the flame on the lean side, where both derivatives, df,/d¢, and dy/d¢,,
are large, of the order of 1/, (see Figs. 2 and 3).

Term IT1 is always positive because both §,and a,, are larger than one and o’
is equal to one. It is associated to the excess of mechanical energy created by
buoyancy (as expressed in equation (40)) that does not contribute to the
average kinetic energy of the jet; for top-hat profiles, or in the downstream
region where ff, = o, = o' =1, this term vanishes. This term should be most
important near the flame tip, where the density is lowest. When compared with
term II, its relative order of magnitude may be estimated as follows: if we take
my ~m/L, where L is the flame length, and all the densities and velocities are
supposed to be of a similar order of magnitude, the ratio of the two terms is
(IT)/IT) ~ (g,L, sin(6))/<{¥>2. On the other hand, from Hernandez et al. (1995),
L,/D ~10.3Fr%2 where D is the exit diameter and Fr = u?/(g,D) s the Froude
number based on the exit velocity, and, from Schlichting (1968), assuming a
jet-like behavior, {(#)/u; ~0.14(L,,/D), so that the ratio of the two terms is
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(IT)/d1) ~ 20 sin(8)/Fr°“. The relative importance of term IIT is largest for
small Fr and vertical flames.

Term IV is associated to the variation of ambient properties with height and
is more important far downstream, where the plume properties are close to
their ambient values, There, the values of 8, and of all «’s are close to one, and
equation (42) can be rewritten as

1 d
AZ,y = rily5 (CF) =G + 1, 52 (0, — <5.)) (45)
i v

Term IV may be negative, and can be interpreted as follows: The last term on
the right hand side of equation (27) is a production term due to variation of
ambient properties. If we examine the equation of conservation of mean
mechanical energy, we have a production term m,d(v?/2)/ds. On the other
hand, in the equation of conservation of horizontal momentum, the produc-
tion term m,d(v,)/ds is like a force, that multiplied by the horizontal velocity
{D,> gives a power. When {7, is larger than v,, the power produced by the
force is larger than the production of kinetic energy of the mean flow, and the
difference is expected to be extracted from the turbulent kinetic energy. The
relative importance of this term may be estimated as follows: the entrainment
should behave like the ambient viscosity, ri, ~ p,u*z, and the variation of
velocity goes like dv,/ds ~dv,/dz sin(f) ~u*/z sin(f); then, the relative
impor-tance of both terms is (IV)/(Il) ~ (b/z)* sin(8)[v,/({5,> —v,}]. As the
plume reaches ambient conditions, it is to be presumed that
(B> —v,) ~<B,> ~ v, sin(f), so that (IV)/(II) ~ (b/z)?, and, as the plume
height is much larger than the radius, the relative importance of term IV is
always small.

The entrainment rate mj, can be obtained by eliminating AX,, between
equations (39) and (42). For a self-similar jet without lateral wind and
neglecting buoyancy, only term II of equation {42) is non-zero. Using the
profile defined in equation (19), the definition given in equation (21), and
assuming incompressible flow, {#*> and {#) can be calculated; then, on using
equation (43), §, is obtained. If it is assumed that p, is constant in a
cross-section, it is obtained from equations (39) and (42) than mj, has to be of
the form given by equation (31) and the coefficient C,, has the value 8=, in
agreement with Schlichting’s (1968) solution for a jet. If we choose the
Gaussian profile (equation (18)), C,, = 67, and for a cosine-type profile (equa-
tion (20)), C,, =6.06m. Under the previous restrictive conditions, the two
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methods, based on equations (39) and (42), to calculate AZ, | will give the same
result if equation (31) is used to calculate the entrainment, and the appropriate
value of C,, is chosen. It is of interest to know what happens in the general case
of a compressible non-axisymmetric flame. In Figure 5, the values of AX,,
obtained using equations (39) and (42) are compared, for a typical case, and the
differences are reasonably small, except near and downstream of the cross-
section where the flame tip is located, where term I of equation (42), associated
to the variation of f,, is largest. The level of difficulty associated to the
application of the two equations is similar: the integral of equation (39) is quite
straightforward, and can even be performed analytically. The main advantage
of equation (42) is that it is of a more general validity, and can be applied more
confidently when the shape of the profile, i (r/R), is not well known, because it
is less sensible to its choice which is taken into account in equation (42)
through the factor f,. This factor may only change from 1, for a top-hat or
when the velocity is close to the ambient one, to a maximum of 1.6, in a
Gaussian profile near the flame tip (Fig. 3), whereas the integral of equation
(39) experiences much larger changes with the shape of the profile and even
tends to infinity as a top-hat profile is approached.
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F"IGURE 5 Compar.ison of the mechanical production of turbulent kinetic energy obtained using
equation (39) (dashed line) and (42) (solid line). Horizontal flame. Fr =20000, D = 10 cm, v/t =0.1.
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The production of (k> by buoyancy is given by

_ & <ﬂ>d<,5> .uadpa 2 o
AZkZ_a“a,,((ﬁ) i . ds 7b? sinf. (46)

Using arguments similar to those applied to estimate the order of magnitude of
term ITI in equation (42), it can be shown that this term, when compared with
term Il of equation (42), is even smaller than term III, of an order
AZ,,/(IT) ~ sinf/Fr®8, and, in practical cases, is always negligible.

For the dissipation rate of <k,

AZs = =043 (KpY <& — pae )b’ (47)

where, as it has been shown by Servert (1993), the coefficient a5 is also close to
one.

5.5.4. Source Terms in the Equatijon for the Dissipation
Rate of the Turbulent Kinetic Energy

We consider that the source terms in equation for (&) are equal to those in
equation for (k) corrected by the factor {&)>/{(k) and affected by the classical
constants of the k-e model: C,; = 1.44, C,; = 0.95,and C,, = 1.92, for the three
terms appearing respectively in equations (45) to (47).

5.5.5. Source Terms in the Equation for the Variance
of the Mixture Fraction

The production of g is given by
2 2
Sg1 = — (V) (48)
g

Proceeding in the same manner as for the k production term AX, | of equation
(42), the following relation is obtained

d - -
AS P 252 4 ity >, (49)

"
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where the coefficient , is analogous to §, defined in equation (43),

_<& (50)

The two terms of equation (49) are similar to terms I and II, respectively, of
equation (42), and similar comments can be made.

The dissipation term in the three-dimensional equation for g is used in the
one-dimensional equation by direct substitution of the averaged quantities,
and the correction coefficient is considered equal to one, so that

AT, = —Cgpm<8>%nb2, (51

where C, = 0.8 is a constant of the k-e-g model.

5.6. Exit Conditions

At the exit mouth it is assumed that the conditions are known and have a
top-hat distribution. There is a short initial transition region, of the order of
five to ten diameters, in which the profiles are chosen as a linear combination
of top-hat and Gaussian ones, and where the additional condition that the
maximum value of d~> is equal to that at the exit is imposed. This assumption is
not valid for g and ¢, which are expected to be largest at the borders of the jet,
and consequently will not be even qualitatively described by a linear combina-
tion of a top-hat and a Gaussian profile. However, beyond the short transition
region, the profiles of all the variables, even those of g and g, behave similarly to
Gaussian ones.

For the exit values of k and ¢, we have taken k, = 4v}/8CJ* and ¢, = 2k3}/*/D
(Hernandez et al., 1995), where D is the pipe diameter and A is the classical head
loss factor taken from Moody’s diagram, corresponding to the discharging
pipe. Nevertheless, turbulence properties at the exit are found to have negli-
gible influence on flame evolution.

When the stagnation pressure of the exit gas is high enough, choking
conditions are reached at the exit. To calculate the expanded conditions, that
are the equivalent exit conditions, we use an approach similar to that proposed
by Birch et al. (1987), except that the stagnation enthalpy, instead of tempera-
ture, is assumed to be constant in the expansion. »
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The lift-off effect has been incorporated into the model considering that the
combustion process is inhibited until a certain distance, which is determined
according to the correlations proposed in Crespo et al. (1994).

6. COMPARISON WITH EXPERIMENTS AND RESULTS
OF THE 3D MODEL

Verheij and Duijm (1991) carried out experiments in which they measured
temperature distributions in the middle vertical section of a flame, correspon-
ding to a release of natural gas through a 5 mm nozzle at a height H = 250 mm
over the ground, for different fuel exit velocities and wind speeds. The ground
roughness was z, = 3.8 x 10™° m. Hernandez et al. (1995) show that several
effects such as the choice of different probability density function for the mixture
fraction (that is required in the k-e-g model), or the influence of ambient
turbulence are small, so that the only relevant non dimensional parameters
appearing in the problem are the Froude number based on exit conditions,
Fr = u?/(g,D), and the ratio of ambient velocity at the height of the exit pipe to
the fuel velocity at the exit, v, 5/u;. In Crespo et al. (1994) five cases are presented,
and for each one of them the results of the full 3D elliptic model, of a parabolic
version of it, and of the 1D model are compared with those of the experiments. In
this work, we present in Figure 6 only the case corresponding to Fr = 14009 and
v,u/u; = 0.029 that is considered to be representative, and compare the results of
the 1D model with those of the elliptic 3D model and experimental measure-
ments. The agreement is good, although the temperature contours are in general
longer and thinner in the one-dimensional model than in the three-dimensional
one; in general, there seems to be a better agreement of experiments with the 3D
elliptic code than with the 1D code. Asit will be discussed later, this discrepancy
may be due to the fact that the Prandtl number used by Hernandez et al. (1995) is
o, =0.7, whereas in the 1D model proposed here, o, = 1.0.

In Figures 7a and 7b, a comparison is made between the temperature dis-
tribution in a cross-section calculated with the 1D model and measurements
described in Bennett et al. (1991); these measurements correspond to a release of
pressurized natural gas, so that it is necessary to calculate the expanded
conditions to apply the 1D model, as indicated in Crespo et al. (1994). In these
figures are also presented the rescaled results of a small-scale experiment, made
by Bakkum (1994) at the scale 1/35, maintaining Froude number similarity, and
using as initial velocity and diameter those corresponding to the expanded jet.
The large-scale release corresponds to a mass flow rate of natural gas of 8.6
kg/s, an exit diameter of 152 mm, a wind velocity of 0.2 m/s, a burner height of
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FIGURE 6 Comparison of temperature contours obtained with the 3D elliptic code and the 1D
code. Fr = 14,009, ”,,H/“l = 0.029. Continuous line: elliptic code; dahsed line: 1D code.
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FIGURE 7 Comparison of temperature distributions at different cross sections, calculated with
UPMFIRE, with both large (Bennet et al.,, 1991) and small scale (Bakkum, 1994), experiments, that are
supposed to be similar. Case a) downwind distance: 7 m. Case b) downwind distance: 12 m.
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3 m, and a surface roughness of 1 cm. The cross sections of Figures 7a and 7b
are at a height of 3.5 m above the ground, at downwind distances from the exit
of 7and 12 m, respectively. The temperatures measured in the field tests exhibit
variations due to meandering effects, and the plotted data, indicated by black
dots, are averaged values; vertical bars are drawn to indicate the lowest and
highest observed temperature values at locations where large fluctuations and
intermittency were observed. The results from the small-scale tests are in-
dicated by a solid line, and those of the 1D model by a dashed line. In the
profiles predicted by the 1D model there are two maxima and a minimum
indicating that the cross-section is upstream of the flame tip; this can also be
observed for the wind-tunnel experiments in Figure 7a, but not so clearly in
Figure 7b, what means that the flame length predicted by the 1D model is
slightly longer than the one measured in wind tunnel. However, for both
figures the agreement with wind-tunnel measurements is good, and better for
the upstream seciton (Fig. 7a). The agreement with full scale experiments is
also good, but in this case is better for the downstream section (Fig. 7b). The
peak temperatures predicted by the 1D model are larger than the measured
ones, both in large-scale and wind-tunnel experiments.

In Herndndez er al. (1995), the geometric characteristics of the flame
surface, defined as the surface where the average mixture fraction has its
stoichiometric value, have been calculated using the 3D elliptic code. These
overall characteristics in non-dimensional form turn out to be mainly
funcitons of Fr and v,,/u,. In particular, for horizontal flames, the non-
dimensional flame length, L, /D, increases with both v, /u, and Fr, and the
following correlation has been proposed (Crespo and Hernandez, 1993) to
describe this behavior:

L
=103 <1 ~3.5 Euﬂ) Fr 2+ 09tm/i) (52)
1

for 1000 < Fr < 15000 and 0 <v,g/u, <0.1. This correlation is identical to
another one proposed by Ott (1993), based on measurements of visible flame
lengths, if the stoichiometric to visible flame length ratio is 0.61, which is within
the range of variation of this ratio predicted by other authors, and v,,/u, =0,
as discussed in Hernandez et al. (1995). In Hernandez er al. (1995) is also
compared the ratio L,/D predicted by the 3D elliptic code with the results of
another 1D model proposed by Peters and Gottgens (1991), and a very good
agreement is found. The calculations of Hernandez er al. (1995) were carried
outusing a value of o, = 0.7, and Peters and Géttgens (1991) took g:=0.71.In
the 1D model presented here it has been assumed that ¢ = 1.0,s0 that in order
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to compare with the results of Hernandez et al. (1995) and Peters and Gottgens
(1991) it is necessary to account for the influence of o,. The influence of o,
could be approximately taken into account by considering that the transverse
profile is ¥, = exp(-o—é(r/R)z), instead of equation (18); then, on using equa-
tions (21) and (22) and assuming constant density, it can be shown that the
ratio of the maximum and average values of the mixture fraciton, & /{&), is
(1 + o,), instead of the value 2 predicted by equations (33) and (34). However,
near the flame, density variation is important, and, as it is associated to the
variation of temperature and, consequently, of mixture fraction, a larger
influence of o, on ¢ is expected. Peters and Gottgens (1991) take into account
density variations by using a mass weighted similarity variable and assuming
that the Chapman-Rubesin parameter is constant, and find that &, is propor-
tional to (1 + 20,)/3. However, the results that are shown next indicate that the
influence of g, is even larger, and that &, should be proportional to o,. For
horizontal flames that are mainly momentum dominated, the mass fraction is
expected to decrease as 1/s, so that the flame length, L, defined as the value of
swhere £, = £, should also be proportional to £, and should be multiplied by
the factor affecting &,. The best agreement between the 1D calculations and
those of Hernandez et al. (1995) is obtained if this factor is ¢,. This correction
has been included in the results of the 1D calculations shown in Figure 8 for
horizontal flames. For this figure, the exit height is H =2 m and the surface
roughness is z, = 0.5 mm, so that the ambient turbulence is 1/In(H/z;) =0.11;
Hernandez et al. (1995) have shown that the influence of the ambient turbu-
lence is small. The exit velocity and diameter are changed in the ranges: v, = 10
to 150 m/s, and D = 0.5 to 5 cm, respectively; this means that, besides Fr and
v,n/t1, two other non-dimensional parameters are changed: H/D and the ratio
of radiative losses to heat of combustion. The results of Figure 8 show that the
main dependence is with Fr and v,,/u,, because all the calculated points with
the same value of v_,/u, fall very approximately on the same curve. Also, in
Figure 8, a comparison is made with the results of equation (52) in the
appropriate range, and with numerical results of Hernandez et al. (19995) for
Fr = 100,000, and a good agreement is found, although for low values of Fr the
flame lengths are slightly overpredicted by the 1D model, and for Fr = 100,000
and v,g/u, = 0 are slightly underpredicted. Figure 8 also includes results of small
scale experiments (Bakkum, 1994). It has been supposed that the flame lengths
reported by Bakkum (1994) are visible, so that the same previous factor 0.61 has
been applied to transform them to stoichiometric flame lengths. The agreement
between the results of experiments and those of the 1D code is acceptable.
Figure 9 corresponds to vertical flames; the range of variation of the
parameters is as in Figure 8. In this case, the influence of g, is smaller, because
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FIGURE 8 Comparison of non-dimensional horizontal-flame lengths calculated with the 1D
model, correlation (52), affected by the factor 6,=0.71, and with the 3D elliptic code, and
experimenta] results of Bakkum (1994). Continuous line: correlation of Crespo and Hernandez
(1993), equation (52). [J 1D model, v,4/u, =0.+ 1D model, v,5/u, =005 <1D model,
Uag/ty = 0.10. O Hernédndez et al. (1995) for Fr = 100,000 and v,5/u, = 0.10. X Hernandez et al.
(1995) for Fr = 100,000 and v,/u, = 0. W experiments of Bakkum (1994) v, /u, =0.

for buoyancy-dominated flames the mixture fraction decays more slowly with
distance, like 1/s*/%, and if the same criterium as above is used, the factor
should be ¢7/* = 0.87. However, this factor gives flames slightly shorter than
those calculated by Hernandez et al. (1995), and a much better agreement is
obtained if the factor is deduced from the criterium of constant density
indicated above: [(1 + ¢,)/2]*/* = 0.94. In Figure 9 a comparison is made of
the 1D results affected by that factor with a correlation of Becker and Liang
(1978) that is in excellent agreement with the results of Hernandez et al. (1995)
forv,, /u; =0. However, as v, /u, increases, the flame length predicted by the
1D model increase, instead of decreasing as predicted by Hernandez et al.
(1995). These authors also predict that for a certain value of v, /u,, that
depends on Fr, the flame length reaches a minimum, and for further increases
of v, /u,, the flame length starts to increase again. This discrepancy may be
interpreted as though the minimum, that in Hernandez er al. (1995) appeared
for v,/u, in the range 0.05 to 0.15, now appears around v, /u;, =0. Since the
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FIGUREYS Non-dimensional vertical-flame lengths calculated with 1D model, affected by the
factor [(1 + ¢,)/2]1%° =0.94; O v,u/u, = 0; + v,5/u; =0.05; & v,g/u; =0.10. Comparison with
correlation of Becker and Liang (1978) for v,5/u, = 0 (continuous line) that agrees well with the
calculations of Hernandez et al. (1995).

1D model is derived from the 3D equations assuming that the flow is parabolic
along the center-line of the flame, it is to be expected that for the case that the
flame is vertical and there is no lateral wind, this assumption will hold better
than when there is lateral wind and v, /u; # 0.

Although, as it has been seen, the influence of radiation on flame length 1s
small, it is also of interest to estimate its influence on temperature distribution.
Hernandez et al. (1995) assumed that the radiative losses were a fixed fraction,
19%, of the heat of reaction and accordingly used a correlation proposed by
Sivathanu and Faeth (1990) for T(£). In Figure 10 are compared the average
temperature distributions, { T, using expression (38) for the radiative losses,
assuming that they are a fixed fraction of the heat of reaction, and without
radiation losses, for two values of Fr. Upstream of the flame, the temperatures
calculated with the 1D model are somewhat larger, and downstream smaller
than those obtained assuming that the radiative losses are a fixed fraction of
the heat of reaction.
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FIGURE 10 Comparison of the average temperature, (T, distribution along the flame,
calculated with heat losses as in equation (38) (continuous line) as a fixed fraction of the heat of
reaction (short dashed line) and with no radiation losses (long dashed line) for two values of
Fr=2000 and 20000. Horizontal flame. v,;/u; =0.0.

7. CONCLUSIONS

A procedure has been presented to obtain a one-dimensional (1D) model of
turbulent jet diffusion flames for releases of gaseous fuels in the presence of a
non-uniform incident wind. The model is deduced from a parabolic three-
dimensional (3D) formulation of the fluid dynamics equations complemen-
ted with models for chemical reaction, thermal radiation and an adaptation of
the k-e-g closure method. Self-similar profiles in planes normal to the center
line are assumed, that can extend radially to infinity. New terms, not present
in the literature, appear in the 1D conservation equations as a consequence
of the variation of the ambient properties with height. An alternative
procedure for the production of the turbulent kinetic energy and of the
mixture fraction variance, that is less dependent on the choice of the
transverse profile, is proposed. Results obtained with the model have been
compared with those of the three-dimensional model, developed by the
authors, and with available wind-tunnel and full-scale experimental results.
The agreement is in general good; however, the model can be improved by
further refinement and adjustment of parameters. In particular, the effect of
the turbulent Prandtl numbers, mainly that of the mixture fraction o, should
be taken into account explicitly in this 1D model. For example, another 1D
model, developed by Peters and Gottgens (1991), that is simpler than ours



TURBULENT JET DIFFUSION FLAME MODEL 113

gives a better agreement with the results of the 3D model than the one
presented here. However, it should be stressed that this 1D model includes -
radiative effects in detail, whereas both in the 3D (Hernandez et al., 1995)
model and the 1D model of Peters and Gottgens (1991) radiative losses are
only contemplated in a global way. Besides, the comparison with experi-
ments does not show conclusively that the 3D results are better than the 1D
ones. Another improvement that the authors are considering is the choice of
non-symmetrical profiles to take into account lateral wind and buoyancy in
inclined flames. It will also be of interest to estimate the entrainment, when
there is a cross wind, from the two equations giving the mechanical produc-
tion of k (equations (39) and (42)), although effects such as those due to the
downstream vortices and to non-symmetric profiles will have to be taken
into account.
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